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ABSTRACT 
Recurrent Neural Networks have largely been explored for low-dimensional 

time-series tasks due to their fading memory properties, which is not needed for 

feed-forward methods like the Convolutional Neural Network. However, benefits of 

using a recurrent-based neural network (i.e. reservoir computing) for time-

independent inputs includes faster training times, lower training requirements, and 

reduced computational burdens, along with competitive performances to standard 

machine learning methods. This is especially important for high-dimensional 

signals like complex images. In this report, a modified Echo State Network (ESN) 

is introduced and evaluated for its ability to perform semantic segmentation. The 

parallel ESN containing 16 parallel reservoirs has an image processing time of 2 

seconds with an 88% classification rate of 3 classes, with no prior feature 

extraction or normalization, and a training time of under 2 minutes. 
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1. INTRODUCTION 
The Echo State Network (ESN) has been a popular 

approach to time-series signal supervised learning 

since 2008 [1-3], but not many have explored it for 

image sequence processing [4-8]. A challenge is 

that camera frames are high-dimensional signals 

that have variable dynamics according to the 

sampling frequency of the camera, how quickly 

regions of interest change between frames, and 

overall image complexity. ESNs have recently been 

used for medical image semantic segmentation (SS) 

[6], agriculture aerial-view SS [7], and ESN binary 

SS for self-driving vehicles [8], with the last 

processing each image in 1 second, with extensive 

preprocessing not included in that metric. Each 

publication has processing times that are limited 

due to the standard reservoir architecture approach 

and computationally-expensive feature extraction 

preprocessing. This report explores a more scalable 

option that reduces the need for extensive image 

preprocessing or long training times by taking 

advantage of the ESN architecture. 

Applying one reservoir to process a 1-D signal is 

the most common approach when using ESNs, but 

is not viable for high-dimensional signals like 
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images due to high neuron requirement, which 

exponentially increases processing times (O2). 

Thus, the common approach is to generate a small 

set of feature values per pixel that are fed through 

the ESN to generate the desired pixel. The output 

image is generated 1 pixel at a time, and substantial 

preprocessing is required before the ESN operates. 

Instead, numerous parallel reservoirs may be used 

to process large sections of the image, with a large 

output matrix being trained to the concatenation of 

all the parallel reservoir state vectors. Such a 

concept has been considered in literature [9], but 

not heavily for complex image processing. This 

approach avoids the problem of exponential 

training/processing time of a single central 

reservoir and distributes the computational load 

among many smaller reservoirs, allowing for 

substantially greater neuron-to-pixel ratios. 

This report explores the metrics of the modified 

ESN using an online benchmarked dataset that uses 

complex off-road camera images. Section 2 

reviews the mathematics of the ESN and explores 

the parallel ESN architecture. Section 3 covers the 

benchmark dataset and how it is used in the 

experiments. Section 4 shows the results of the 

tests. Section 5 contains a discussion, followed by 

a conclusion in Section 6. 

 

2. The Parallel ESN 
  The basic Echo State Network architecture 

(shown in Figure (1)) demonstrates an input signal 

or image represented as a vector get multiplied by 

a random input weight matrix and then passed 

through the reservoir. For the ESN, the reservoir is 

a recurrent neural network of typically leaky 

integrator neurons, which acts to transform the 

linear data into a high-dimensional state space. The 

neurons take on a value according to the network 

stimulus and the output is a set of values called the 

state vector, as defined by Equation (1). In that 

equation, X is the input data, Win, Wres, and WOUT 

are the input line weight vectors, reservoir weight 

vectors, and output line weight vectors, 

respectively, s is the state vector of the reservoir, 

and α is the learning rate. The desired output  

 

Figure 1. Basic ESN architecture. 

classification or annotation is then used with the 

state vector from the reservoir to generate an output 

weight vector via Ridge regression in Equation (2) 

or Moore-Penrose Pseudo-inverse, which are the 

most commonly used training algorithms for ESNs. 

There, β is a regularization term to prevent 

overfitting, I is the identity matrix, and YTARGET is 

the output. With the output weights calculated, the 

ESN simply needs an input to generate a 

classification according to Equation (3). 

 

𝑠 = (1 − 𝛼)𝑠 + 𝛼tanh⁡(𝑊𝑟𝑒𝑠𝑠 +𝑊𝑖𝑛𝑋)    (1) 
 

𝑊𝑂𝑈𝑇 = 𝑌𝑇𝐴𝑅𝐺𝐸𝑇𝑋𝑇(𝑋𝑋𝑇 + β𝐼)−1        (2) 

 
𝑌𝑇𝐴𝑅𝐺𝐸𝑇 = 𝑊𝑂𝑈𝑇𝑋                           (3) 

 

The use of multiple smaller parallel and/or series 

reservoirs has been shown to have more improved 

network performance than a single large reservoir 

[9-10]. This concept is applied to the modified ESN 

by having multiple parallel reservoirs that split the 

input image into equal portions as visualized in 

Figure (2), with the total neuron count being the 

number of parallel reservoirs multiplied by the 

neurons per reservoir. The neuron states of each 

parallel reservoir is concatenated into a single state 

vector, which can be defined as the input image's 

transformation into a hyperdimensionalized space. 

The parallel reservoir approach increases neuron-
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to-input ratio for high volume inputs like high-

resolution images without exhibiting exponential 

training times associated with using a single 

reservoir. Instead, training times increase linearly 

with the parallel reservoir approach. The bounds of 

these trends when given significantly large image 

sizes is yet to be explored. The image size of the 

benchmark tests for this algorithm is small 

compared to typical images expected from high-

resolution cameras and other high-dimensional 

sensor datasets like point-clouds from Lidar and 

stereoscopic cameras. Thus, training times may 

become unwieldy for inputs of significant sizes. 

   A static input image independent of time can be 

represented as a time-series image for compatibility 

with the ESN by running the image through a 

standard Gaussian white noise filter multiple times 

to let the neurons in the reservoir converge and 

reach a classification. The added noise has been 

shown in many papers to improve classification 

results and is explained well in [12]. By training the 

algorithm to a noisier signal than the actual one, the 

features of a noise-free image are more identifiable 

to the model. Thus, the final pass of the image 

through the reservoirs is without the added noise 

and the final updated state vectors of the neurons 

are multiplied by the trained output weights to 

generate a classification. 

 

3. Testing Dataset and ESN Parameters 
The tests of this report use a benchmark dataset 

that is then formatted to work with the ESN. The 

parameters of the ESN are essential for competitive 

performances. The setup of these components for 

the tests in this report is described in the remainder 

of this section. 

 

3.1. Benchmark Dataset 
The Robot Unstructured Ground Driving 

(RUGD) dataset was used for these tests [11]. The 

dataset contains color image sequences of complex 

off-road terrains such as trails, parks, and fields 

during ideal sunny conditions. They were taken 

using a camera mounted on a small mobile robot 

platform. The dataset has annotated images with 24 

different classes. This report only uses three 

classes. Thus, the annotated images were 

reclassified according to three classes: (1) desired 

pathway, (2) drivable but off-road terrain, (3) non-

drivable terrains. This report is among the first to 

use the ESN with more than two output 

classifications.  
 

3.2. ESN Testing Parameters 
The modified ESN has many global parameters 

that define the system, with its performance 
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Figure 2. Modified ESN showing the parallel distribution of the image. Multiple passed are done through the 

reservoirs, and the final time step is then multiplied by the trained output weights to generate the segmented output. 
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depending strongly on what the values are 

initialized at before running the algorithm. As full 

network optimization is not within the scope of this 

report, a set of chosen parameters according to 

Table (1) have been used to generate the 

performance metrics of this report. 

 
Table 1. ESN Parameters 

 
 

The number of train/test samples in each epoch is 

split 80% train and 20% test from a randomly 

selected 60 images. The added white Gaussian 

noise has signal-to-noise ratio of 10 and the 

reservoirs will have 60 time steps to converge upon 

a classification. These numbers are based on an 

understanding of the network dynamics and ability 

to perform quick evaluations from ultra-fast 

training times. A low spectral radius, input scaling 

factor, and learning rates are expected for signals 

exhibiting highly non-linearly separable data like 

discrete images, as explored in [12-13]. 

 

4. Modified ESN Metrics and Analysis 
With the global parameters defined, input signals 

pre-processed, and training complete, the ESN 

performances can be explored. As seen from the 

visualizations of Figure (3), the unregulated RUGD 

data is mapped to a corresponding three-class 

semantic segmented image that highly correlates 

with the actual annotated image. Pixel error is 

calculated by subtracting the output and training 

image and then dividing by the total number of 

pixels. The performance error for the parameters 

defined in Table (1) is 88%, with a training time of 

only 2 minutes and individual image processing 

time of 2 seconds. Note that the ESN output has less 

arbitrary detail that was perceived with the 

manually labeled training data. However, the ESN 

output recognized a non-drivable region of pixels 

where a log is located in the background, which the 

manually labeled annotation does not pick up on. 

Inaccuracies of the manually labeled images are 

mostly in the fine details, such as from grass, close-

up objects, highly pixelated or obscure objects, etc. 

Therefore, when the ESN detects objects that were 

not manually labeled, it implies that the real error 

Figure 3. Visualization of an input test image, the annotation, and the output of the ESN. Note the similarities between 

the annotation and the ESN output. 
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rate of the ESN is lower by a small, insignificant 

amount, as it slightly out-classified the labels for 

certain pixels. 

 

4.1. Architecture Optimization 
While network optimization is outside the scope 

of this report, a grid search was performed on the 

number of parallel reservoirs and number of 

neurons per reservoir to understand how improved 

the classification is from higher pixel-to-neuron 

ratios. Figure (4) shows the results of sweeping. 

 

 
Figure 4. Grid Search Results: (top) the classification 

error is observed for the optimization sweep. (Bottom) 

The training error is visualized for the same sweeping 

conditions. 

the number of parallel reservoirs from 1 to 96 and 

the number of neurons per reservoir from 20 to 

1000, making the total neuron count range from 20 

to 96,000. With a total of 94,944 pixels, the pixel-

to-neuron ratios range from approximately 1:1 to 

4747:1. Performances generally improved for 

higher numbers of total neurons. 

   The top plot of Figure (4) shows error rates 

reaching a minimum of 6% for 69 parallel 

reservoirs and 760 neurons per reservoir, validating 

the hypothesis that architecture optimization 

improves error rates for the given image size. The 

bottom plot of Figure (4) is the same sweep 

conditions but focuses on total training time. For 

higher neuron counts, the training time increases. 

The extent of these trends are promising but require 

further investigation to understand how higher 

resolution images and multi-sensor inputs affect the 

ESN architecture, error rates, and training time. 

Dissimilar datasets from the one used in this work 

will significantly alter the number of parallel 

reservoirs and number of neurons per reservoir that 

result in minimum error rates. Thus, when new data 

is introduced, the modified ESN can be quickly re-

trained with a grid search to find the new optimal 

architecture. The duration/stability of this optimal 

point is proportional to the consistency of the 

environment. For wildly changing scenes such as 

single-cell thunderstorms or dust storms, the 

modified ESN performance is expected to 

dramatically decrease. 

 

5. Discussion of Results and Future Work 
The processing time per image is 2 seconds but 

needs to be under 60 milliseconds for usage on 

moving vehicles, since the response time is critical 

for reacting to tire-soil mobility dynamics. 

The optimization of the architecture is a unique 

concept since generally the network is established 

and unchanged during all training. Since training 

times are so short, the grid search can be performed 

significantly faster than standard convolutional 

neural network. In most applications where 

Convolutional Neural Networks (CNN) are used, 
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they are trained prior to field operation, making 

training time an insignificant variable. However, in 

highly dynamic settings where the input data has 

not been pre-trained, the CNN is unable to adapt to 

the new data in a reasonable time. The resnet18 

deep neural network was trained to this dataset and 

performed at 96% but had training times that 

exceeded 2 hours. Comparatively, the ESN of this 

report only needed 2 minutes and achieved a 

maximum of 94% classification. There are clear 

trade-offs to using a CNN over the ESN, and 

neither particularly outperforms the other, but for 

this application the ESN is a significantly more 

effective algorithm that can be scaled to contain a 

more robust ontology and adapt to new settings 

rapidly. Furthermore, the ESN can be adapted to 

different modalities that either perform faster 

training at the expense of error rates or vice versa. 

The biggest flaw of the ESN in this work is 

relatively high-performance instability when the 

finely tuned global parameters are changed, making 

optimization crucial to maintaining competitive 

error rates. 

In future works, this ESN approach will be 

explored for automatic feature extraction via graph 

neural network concepts, faster image processing 

speeds, automated hyper-parameter optimization, 

and usage as a recurrent auto-encoder. 

 

6. Conclusion 
This work evaluates hyper-parameter effects on 

processing time and pixel error of the RUGD 

dataset using the parallel ESN architecture. Test 

results show decreasing average pixel error when 

increasing the number of parallel reservoirs and 

reservoir size. More investigation into the effects of 

reservoir size and the number of parallel reservoirs 

is included. Training takes a few minutes instead of 

hours, with as few as 60 training/testing samples, 

making it a promising approach to terrain mapping 

with unmanned autonomous vehicles. 
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